Understanding and Applying OSHA's Noise Control Policy





### **Erich Thalheimer**

Acoustical Engineer INCE Board Certified

27 Peterson Road Natick, MA 01760

(617) 785 - 8249 Thalheimer@rcn.com

## **Presentation Contents**

- Relevant History
- Fundamentals of Sound
- Human Auditory System
- OSHA Noise Regulation
- Measurement Instrumentation
- Noise Control Options
- Questions & Answers

### **Relevant History**

The **US Occupational Safety and Health Administration (OSHA)** Noise Exposure Regulation became effective in **1971**. Since 1983, OSHA's regulation has included an amendment to require specific components related to hearing protection, audiometric testing, and training.



New York City Noise, 1930



Dr. Maurice H. Miller

Dr. Alice H. Suter

# **Fundamentals of Sound**



- Sound:
  - Pleasant, controllable, desirable, pleasing, understandable



- Noise:
  - Too loud, annoying, uncontrollable, interfering, undesirable, <u>dangerous</u>

Noise is in the ear of the beholder.

# **Human Auditory System**



# 1<sup>st</sup> Dimension: Loudness



- Human ear can hear pressure range over seven orders of magnitude.
- More convenient scale needed: Decibels (dB)
  - Alexander Graham Bell
- dB = 10 Log (P/Po)<sup>2</sup>
  = 20 Log (P/Po)
  Where Po = 20µPa

#### Does 0 dB mean no sound?

# 2<sup>nd</sup> Dimension: Frequency



- Audible frequency range: 20Hz to 20kHz
- Hear most efficiently from 1kHz to 4kHz
- Less sensitivity at lower and higher frequencies
- A-weighted decibel dBA, dB-A, dB(A)

Example of natural evolution?

### **A-weighted Sound Levels**



# Peak vs. RMS





- Peak Level: Raw extreme highest instantaneous level (+ or -, not both)
- RMS Level: Root-mean-square is the energy-average level (can only be +)
- Crest Factor = Peak/RMS
  - Pure tone (sine) crest of 1.4 (3 dB)
- Peak, RMS Impulse, RMS Fast, RMS Slow
- OSHA uses Peak and RMS Slow

# 3<sup>rd</sup> Dimension: Temporal



- Exposed to fluctuating noise levels over time.
- Absolute (not relative) sound level a concern for hearing damage (i.e. air pressure).
- Dozens of noise metrics and descriptors.
- Lmax, Lmin
- Percentiles, L10, L50, L90
- Leq, TWA, Dose

## **Key Noise Metrics**



- Maximum (Lmax) and Minimum (Lmin) Levels
  - Instantaneous max. and min.
- Level Equivalent (Leq)
  - Energy-averaged level
- Percentile Levels (Ln)
  - Level exceeded n% of time
  - L50 = statistical median sound level

#### Time Weighted Average (TWA)

- OSHA's primary noise metric
- Worker's daily exposure to noise normalized to an 8 hour day
- Portion of time exposed to various sound levels – working, resting, etc.
- TWA =  $[SPL_1(T_1) + SPL_2(T_2)....SPL_N(T_N)] / T_{Total}$

# **Adding Decibels**



Logarithmic quantities

Total SPL = 10Log[10^(SPL1/10)+10^(SPL2/10)]

#### Using curve

- Find difference (dB2 dB1)
- Enter x axis, find y value
- Add y value to louder source

#### Rules of thumb

- Two sources the same level, add 3 dB
- Two sources differ by 10 dB, quieter source negligible

In this case, 1 + 1 ≠ 2 Or as Winston Smith learned, 2+2 = 5

| Time to reach 100% noise dose | Exposure level<br>per NIOSH REL | Exposure level<br>per OSHA PEL |
|-------------------------------|---------------------------------|--------------------------------|
| 8 hours                       | 85 dBA                          | 90 dBA                         |
| 4 hours                       | 88 dBA                          | 95 dBA                         |
| 2 hours                       | 91 dBA                          | 100 dBA                        |
| 1 hour                        | 94 dBA                          | 105 dBA                        |
| 30 minutes                    | 97 dBA                          | 110 dBA                        |
| 15 minutes                    | 100 dBA                         | 115 dBA                        |

Exposure to impulsive or impact noise should not exceed **140 dB Peak**. Could cause instantaneous hearing damage.  OSHA noise limits are <u>required</u>. NIOSH noise limits are only <u>recommended</u>.

- Noise exposure limits in dBA 'slow' over a unit of time.
- Thus, a noise DOSE (magnitude and time exposure).
- Note, hearing damage will not occur with brief exceedances. Hearing loss takes prolonged exposure. OSHA's PEL assume a <u>30 year</u> exposure duration.



- Exchange Rates ?????
- OSHA uses 5 dBA/Half Time.
- NIOSH uses 3 dBA/Half Time.
- If you do the math, NIOSH is correct.
  So why does OSHA use 5 dBA/Half Time?
- Politics and money!
- The insurance companies influenced OSHA policy making back in the original 1970s version to avoid excessive compensation payouts.

#### Noise Dose Should remain below 1.0. Often expressed as percentage (0% - 100%).

Permissible Exposure Duration at a given sound level (Hours).

Time Weighted Average Sound Level TWA (dBA).

 $D = \sum_{i=1}^{n} \frac{C_i}{T_i}$ 

where

D: Daily noise dose (allowable D is ≤1)

C: Actual duration of exposure for at a noise level i

n: Number of different noise levels measured

T: Permissible duration of exposure at a noise level i and estimated by

$$T = \frac{8}{2^{(L-90)/5}}$$

where L is the measured sound level in units of dBA.

The 8-hour time-weighted average sound level (TWA), in decibels, may be computed from the dose by means of the following formula:

TWA = 16.61 \* log (D) + 90.



- If TWA >= 85 dBA (Action Level)
  - Must implement an employee hearing conservation program
  - Education of the dangers
  - Annual audiograms
- If TWA >= 90 dBA (Exposure Limit)
  - Must implement noise control measures
  - Administrative controls time shifting
  - Engineering controls noise control

### **Occupational Noise Measurements**



### Instrumentation



- Wide variety of noise instrumentation and manufacturers.
- Simple dosimeters to spectrum analyzers.
  - \$1,000 to \$25,000
- ANSI Standard S1.4.
  - Type 0 Laboratory
  - Type 1 Precision
  - Type 2 General Purpose (OSHA allows for Type 2)

Smartphone Apps? – No, Negative, Nope, Non, Nein, Niet, Na, Ne, Nej, Nee, Nie, Neyn!

## **Dosimeters Basics**





- Worn on the worker for full shift.
- Measures his/her <u>individual</u> noise exposure.
- Rugged condenser microphone worn near ear position (beware wires).
- ANSI S1.4 Type 2 accuracy.
- Measures Dose (%) and TWA (dBA).
- Based on OSHA exchange rate of 5 dBA/Half Time.
- Download data for records keeping.

### **Noise Control Options**



- TWA is a <u>Dose</u>, so you could mitigate worker exposure time and/or level.
- Example Noise Control Methods
  - Proper equipment maintenance!
  - Work shift rotation (administrative).
  - Quieter equipment and processes.
  - Noise enclosures, noise curtains, pipe/duct lagging, vibration isolators.
  - Remote controls.
  - Hearing protection (plugs and muffs).
  - But let's talk a little about hearing protection.....

### **Hearing Protection**







- Ear Plugs foam, easy to insert, comfortable, inexpensive, adequate for high frequency only.
- Ear Molds rubber, form-fitted to individual's inner ear, not bad for lower frequencies, awkward to insert.
- Ear Muffs plastic, over the ear, more noise reduction to lower frequencies, beware leaks around eyeglasses.
- Noise Reduction Rating (NRR) in decibels per ANSI S3.19-1974, not good for electronic ear muffs, better standard needed, measured in-situ is best, NRR is NOT true noise reduction!
- dBNR = ((NRR 7)/2). NRR of 30 = 12 dBNR.

# Questions?

